If it's not what You are looking for type in the equation solver your own equation and let us solve it.
500=9.81t^2
We move all terms to the left:
500-(9.81t^2)=0
We get rid of parentheses
-9.81t^2+500=0
a = -9.81; b = 0; c = +500;
Δ = b2-4ac
Δ = 02-4·(-9.81)·500
Δ = 19620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19620}=\sqrt{36*545}=\sqrt{36}*\sqrt{545}=6\sqrt{545}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{545}}{2*-9.81}=\frac{0-6\sqrt{545}}{-19.62} =-\frac{6\sqrt{545}}{-19.62} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{545}}{2*-9.81}=\frac{0+6\sqrt{545}}{-19.62} =\frac{6\sqrt{545}}{-19.62} $
| 4^(2x-1)=(1/64) | | 7x-6=3x26 | | -x+8=3x-2 | | -10=v/2-6 | | 0.9x^2=9x | | 0.15(x+40)-0.02(x-30)=4 | | 9x/28=9/14 | | 4.5x^2=9x | | 3n=9-2 | | x2+15x=1008 | | x+15+(2x+5)=180 | | 4(x+8)=20(x-6) | | 19=w-5 | | 150=0.15x | | 2375=0.15x | | 2(x+8)-9/3=5-(1-3x)/4 | | 13=t/9+8 | | 7(x+4)=5(x+5)+6 | | 7y-5=3y+13-2 | | 5+s=-8 | | w+19/5=10 | | 160+4x=196 | | (1/3)(x+5)^2=7 | | x-x/2+5=x-2/8+6 | | (1-x^2)+4x+11=0 | | H=2+65t-16t2 | | (1-x^2)-4x-5=0 | | 2(1-x^2)-3x-3=0 | | -114=-6(7-2n | | -3(n-4=-24 | | 3z+17=180 | | 8+x+8+x=144 |